Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients.

نویسندگان

  • Hiroki Mizukami
  • Kazunori Takahashi
  • Wataru Inaba
  • Kentaro Tsuboi
  • Sho Osonoi
  • Taro Yoshida
  • Soroku Yagihashi
چکیده

OBJECTIVE Deficits of β-cells characterize the islet pathology in type 2 diabetes. It is yet to be clear how the β-cell loss develops in type 2 diabetes. We explored the implication of oxidative stress, endoplasmic reticulum (ER)-induced stress, and autophagy deficit in the β-cell decline in Japanese type 2 diabetic patients. RESEARCH DESIGN AND METHODS Pancreases from recent autopsy cases of 47 type 2 diabetic and 30 nondiabetic subjects were investigated on the islet structure with morphometric analysis. Volume densities of islet (Vi), β-cell (Vβ), and α-cell (Vα) were measured. To evaluate cell damage of endocrine cells, immunohistochemical expressions of oxidative stress-related DNA damage as expressed by γH2AX, ER stress-related cell damage as CCAAT/enhancer 1 binding protein-β (C/EBP-β), and autophagy deficit as P62 were semiquantified, and their correlations to islet changes were sought. RESULTS Compared with nondiabetic subjects, Vβ was reduced in diabetic subjects. Contrariwise, there was an increase in Vα. There was a significant link between reduced Vβ and increased HbA1c levels (P < 0.01) and a trend of inverse correlation between Vβ and duration of diabetes (P = 0.06). Expressions of γH2AX, P62, and C/EBP-β were all enhanced in diabetic islets, and reduced Vβ correlated with the intensity of γH2AX expression but not with C/EBP-β or P62 expressions. Combined expressions of γH2AX, P62, and C/EBP-β were associated with severe reduction of Vβ. CONCLUSIONS β-Cell deficit in type 2 diabetes was associated with increased oxidative stress and may further be augmented by autophagic deficits and ER stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sesterin as a biomolecule

Sestrins (Sesns), highly conserved stress-inducing metabolic proteins, are known to protect organisms against various harmful stimuli including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and hypoxia. Sestrins regulate metabolism mainly through activation of AMP-dependent protein kinase (AMPK) and inhibition of rapamycin complex 1 (mTORC1). Sestrins also play a pivotal role...

متن کامل

Mitochondrial DNA Damage via Augmented Oxidative Stress Regulates Endoplasmic Reticulum Stress and Autophagy: Crosstalk, Links and Signaling

Saturated free fatty acids (FFAs) have been implicated in the increase of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, autophagy, and insulin resistance (IR) observed in skeletal muscle. Previously, we have shown that palmitate-induced mitochondrial DNA (mtDNA) damage triggers mitochondrial dysfunction, mitochondrial reactive oxygen species (mtROS) production,...

متن کامل

New Perspectives on the Role of Hyperglycemia, Free Fatty Acid and Oxidative Stress in B-Cell Apoptosis

Apoptosis is a complex network of biochemical and molecular pathway with fine regulatory mechanisms that control the death event during several pathological situations in multi cellular organisms. It is the part of normal development that occurs in a variety of diseases and is known as aberrant apoptosis. Pancreatic β cell apoptosis is also a pathological feature which is common in both type 1 ...

متن کامل

In Vivo Pancreatic β-Cell–Specific Expression of Antiaging Gene Klotho: A Novel Approach for Preserving β-Cells in Type 2 Diabetes

Protein expression of an antiaging gene, Klotho, was depleted in pancreatic islets in patients with type 2 diabetes mellitus (T2DM) and in db/db mice, an animal model of T2DM. The objective of this study was to investigate whether in vivo expression of Klotho would preserve pancreatic β-cell function in db/db mice. We report for the first time that β-cell-specific expression of Klotho attenuate...

متن کامل

Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions

Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes care

دوره 37 7  شماره 

صفحات  -

تاریخ انتشار 2014